
Reflection Space Image-Based Rendering (link to video)

Kevin Lim Myron Liu

Abstract

In this report we describe the implementation of Reflection Space
Image-Base Rendering as described by [Cabral et al. 1999]. HDR
environment maps contain high-quality lighting information, but in-
tegrating them is costly, especially if view-dependent materials are
involved. Our goal is to generate a scene in which the user can ro-
tate around the object lit by an HDR environment map, and observe
view dependent BRDF changes in real-time.

Keywords: radiance, global illumination, real-time, environment
maps, HDR

1 Motivation

Realistic scenes hardly ever consist purely of simple light sources.
Environment maps capture complex lighting scenarios—such as en-
vironment lighting—from real scenes. If we assume that the envi-
ronment is much farther from the objects than any length scale of
the local scene, then we can store the lighting information in the
form of an environment map; When stored this way, we can asso-
ciate each point on the map with an incident light direction, and
allow for complex lighting. However, there are challenges with do-
ing this in real-time.

2 Challenges

For viewpoint independent BRDFs, it is a simple matter to achieve
interactive framerates. By definition, viewpoint independence
means that the BRDF f(θin, φin; θout, φout) = f(θin, φin) de-
pends only on the incident directions. Under this condition, for
each fixed orientation of a surface element (relative to the environ-
ment), the integration of irradiance over the upper hemisphere of
the patch only needs to be done once. Following this computation,
we can use the resulting radiance value for arbitrary viewpoint. This
is what we do for Lambertian surfaces as shown in the results.

A similar simplification can be made for models such as Phong
specular reflection. The argument is completely analogous. The
only difference is that rather than index into the direction of the
surface normal (which is what we did before), we index into the
reflected direction (of the view vector about the surface normal).
This sort of indexing into the reflected direction is what is meant by
reflection space image based rendering. In either case, rendering
is fast and easy, since the radiance depends only on two variables.
In the former, the radiance is stored in terms of patch orientation
(θn, φn). In the latter, the radiance is stored in terms of reflected
view vector direction (θr, φr). We could, for instance, store this
information in discretized form using a 2D θ, φ array.

Of course, perfectly mirrored reflection is even simpler. Since the
BRDF in this case is a delta function in the reflected direction (given
an incident direction), (θin, φin) and (θout, φout) are coupled, such
that no integration even needs to be done, and a radiance map be-
comes redundant. Indexing into the environment map using the
reflected direction suffices, since that is precisely the effect of inte-
grating over the delta function.

Unfortunately, things aren’t so simple when the BRDF is not view-
point independent. In this case, we must store multiple radiance
maps and interpolate between them. In the next section, we describe

how to create the radiance maps, both for the simple case in which
only one map is needed, and for the general, more-complicated
case.

3 Creating the Radiance Map(s)

As previously mentioned, for viewpoint independent BRDFS, we
only need one radiance map. For each point on the map (cor-
responding to each surface normal direction), we integrate over
the upper hemisphere the environment intensity modulated by the
BRDF and geometry terms (in this case, the cosine of the angle be-
tween incident light direction and patch normal), and index into the
radiance map appropriately.

To handle 3D BRDFS that do not depend on φin we would need
to stored a 4D array. This is because the space of viewing vec-
tors is two dimensional, and for each, we need to store a two di-
mensional radiance map. The memory requirements to do this are
astronomical, and we must resort to dramatically subsampling the
space. Namely, we fix a handful of viewpoints and compute the
radiance map for each such viewing direction. Then to obtain the
appearance of a patch from an arbitrary viewing direction v̂d, we
interpolate between the way the patch would appear from the near-
est viewing directions v̂0, v̂1, v̂2. Of course, the number of view-
points we need to precompute depends in part on how rapidly the
BRDF varies. For something like Cook-Torrance, it suffices to pre-
compute on viewpoints corresponding to the icosahedral directions.
This provides adequate coverage of the sphere on which the view
vector could lie. More precisely, if we let Ri(θn, φn) be the radi-
ance map corresponding to viewpoint v̂i parameterized by surface
normal orientation.

Ri(n̂) =

∫
θE

∫
φE

LE(θE , φE)f(θE , φE ; v̂i)

max(L̂E(θE , φE) · n̂, 0) sin(φE)dθEdφE

As alluded to above, this method cannot handle well BRDFs that
depend on φin. Such materials appear differently when spun about
its surface normal (brushed metal being one example). In this case,
the full description is five dimensional, and introduces another layer
of complexity. To apply the same methodology of saving a handful
of 2D radiance maps (subsampling in the patch rotation in addition
to subsampling in space of viewing directions) would be to take 2D
slices of a 5D space, which is a far sparser sampling than before.

4 Interpolating Between Radiance Maps

Let v̂0, v̂1, v̂2 be the three nearest viewpoints. Supposing they are
not colinear (which is guaranteed if we use the icosahedral direc-
tions), the reasonable way to combine the appearance is via spheri-
cal barycentric interpolation. The values we interpolate are simply
the radiances for the material patch as it appears in the three maps
i.e. we interpolate R0(n̂), R1(n̂), R2(n̂).

For each radiance map, we must define a local coordinate system
{x̂i, ŷi, ẑi} in which to store the precomputed values. A natural
choice is to pick ẑi = v̂i; given ẑi, we pick x̂i, ŷi accordingly
while preserving handedness. In general, the choice of coordinate
system is arbitary. All that matters is that a function gi exists for
each viewpoint that takes the representation of a point in the local
coordinates of the ith viewpoint to its representation in the global

https://www.youtube.com/watch?v=JHnMTq9AbrQ

coordinates of the environment map. If we pick right-handed, or-
thonormal {x̂i, ŷi, ẑi}, then gi is just left matrix multiplication by
[x̂i|ŷi|ẑi].

So for reflection space (e.g. Cook Torrance Model), the radiance
values ci ≡ Ri(ĥi) we interpolate are obtained as follows (Also
see Fig.1).

• Given v̂d and n̂, compute the reflected direction r̂

• Find the three viewpoints nearest to v̂d: v̂0, v̂1, v̂2

• Find the half-angle ĥi between v̂i. This is the patch orienta-
tion that would have given rise to r̂ had we reflected v̂i about
n̂

• Index into the local representation of ĥi on the corresponding
radiance map to obtain ci ≡ Ri(ĥi).

Figure 1: The red arrow is the reflected direction given a surface
element and viewing direction (blue). The green arrow is a nearby
viewing direction for which we have precomputed the radiance map
Ri. We index into the coordinate on Ri corresponding to the half
angle ĥi, which is the patch orientation that would have given rise
to r̂ in the precomputed viewpoint.

If we use a model that indexes into the direction of the surface nor-
mal, then the procedure is even simpler, since in this case, we need
not compute r̂ and ĥ. Instead, we index directly into the local rep-
resentation of n̂ in the precomputed map.

Each value to be interpolated is weighted using spherical barycen-
tric coordinates (see Fig.2). The solid angle subtended by the trian-
gle corresponding to v̂i is

ai = αi + βi + γi − π

where α, β, γ are the dihedral angles

αi = cos−1
(
(v̂d ⊗ v̂i−1) · (v̂i+1 ⊗ v̂i−1)

)
βi = cos−1

(
(v̂i+1 ⊗ v̂d) · (v̂i+1 ⊗ v̂i−1)

)
γi = cos−1

(
(v̂i+1 ⊗ v̂d) · (v̂i−1 ⊗ v̂d)

)
We have implicitly assumed index wrapping, such that i − 1 and
i + 1 are actually (i − 1) mod 3 and (i + 1) mod 3. ⊗ is the
normalized cross product i.e. a⊗ b = (a× b)/‖a× b‖. Then the
interpolated patch color is

c =

∑
i=0,1,2 aici∑
i=0,1,2 ai

Figure 2: v̂d is the viewing direction, which can point in any direc-
tion. v̂0,1,2 are the nearest viewing directions on which the radiance
map has already been precomputed. The appearance of a material
element from the vantage point of v̂d is obtained by averaging the
way it would appear from viewing direction v̂0,1,2 each weighted
by the solid angle subtended by the opposing triangle.

5 Results

We’ve tested our implementation on an Intel i5 CPU, 8GB Memory,
NVIDIA GeForce 560 Ti Graphics Card machine. Our Diffuse and
Phong pre-integration took 2557.1 seconds and 3521.7 seconds for
a 3072 pixels by 1536 pixels HDR Grace Cathedral map, provided
by the USC HDR archive [Debevec and Malik 2008]. The Cook-
Torrance integration was performed on a reduced map size of 100
pixels by 50 pixels, as our roughness value would be a high 0.1, and
the shading will become blurred. This took an average 2.63 seconds
per map, and for the twelve viewpoints, this took 31.6 seconds total.

Since shading information is pre-computed, the interactive scene
can run at a smooth capped 60 frames per seconds for all four shader
types. These figures are shown in figures 3, 4, 5, 6b, and 6a.

Acknowledgements

We would like to thank Professor Ravi Ramamoorthi for the amaz-
ing class and project.

References

CABRAL, B., OLANO, M., AND NEMEC, P. 1999. Reflection
space image based rendering. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 165–170.

DEBEVEC, P. E., AND MALIK, J. 2008. Recovering high dynamic
range radiance maps from photographs. In ACM SIGGRAPH
2008 classes, ACM, 31.

RAMAMOORTHI, R., AND HANRAHAN, P. 2001. An efficient rep-
resentation for irradiance environment maps. In Proceedings of
the 28th annual conference on Computer graphics and interac-
tive techniques, ACM, 497–500.

Figure 3: Diffuse shader

Figure 4: Perfectly mirrored shader

Figure 5: Phong shader

(a) Cook-Torrance shader

(b) Cook-Torrance specular component shader

Figure 6: Cook-Torrance shaders

